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PREFACE

At the present time there is a need for expanding traffic control
and navigation facilities, particularly for ships and transoceanic air-
craft. Moreover, increased growth of transoceanic travel and increased
speeds will compound the problem and require greatly increased communi-
cation capability. It seems almost certain that satellites will have
a definite role in future communication, traffic control and coordina-
tion. This Memorandum concerns an investigation of a method for obtain-
ing a navigation capability as a secondary or bonus feature to a communi-
cation satellite system.

So far as the authors are aware, the use of range and range-rate
data in combination represents a different approach to the communica-
tion, gé&ﬁ?él and navigétion problem and has certain novel and attractive
features which warrant investigation. The results of this preliminary
work should prove useful to others who may wish to extend the studies
further, if low-altitude (< 4000 n mi) communications satellites
prove desirable,

This Memorandum was prepared under the Communications Satellite
Technology contract with the National Aeronautics and Space Adminis-
tration. It was undertaken at the informal request of Mr. Greg Andrus,
Advanced Technology Manager of the Communications and Navigation Pro-

grams Division.




SUMMARY

The primary motivation for this study was the belief that a navi-
gation capability should be developed as a secondary or bonus feature
to a communication saielliie sysiew since the primary ncced ic for co-
ordination, control and communication. With this objective in mind,
this Memorandum is concerned with the technology involved in determining
a user vehicle's position from a single satellite by obtaining multiple
measurements of range and range-rate data. The vehicle can be anything
from a submarine to a supersonic transport. The computational method
is based on a "six-element fix" where three unknown position components
and three unknown velocity components are determined from a set of
measurements of range and range-rate data. In principle, it is an
orbit determination process in reverse. A simplified model of the
process was developed and tested on a digital computer in order to
test for convergence and sensitivities to error when the time interval
between measurements was decreased. Many examples were simulated with
vehicle speeds ranging from 20 K for surface vessels to 2000 K for
supersonic aircraft and satellite altitudes ranging from 500 n mi to
synchronous, both polar and equatorial, The results, although by no
means complete, are sufficient to indicate that satisfactory aircraft
navigation accuracies may be achieved for orbital altitudes of less
than 4000 n mi. At the higher altitudes, the navigation process is too
sensitive to measurement errors in doppler shift using measurement time
intervals which would be practical for high-speed aircraft. The results
of this investigation indicate that further study efforts on these

techniques may be warranted, if low-altitude communications satellites

become available.
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1. TINTRODUCTION

The RAND Corporation has been working for NASA Headquarters under
Contract NASr-21(02) in connection with future requirements for non-
military traffic coordination, control and navigation systems. This
work has been prompted by the fact that there is an increasing
ieed for frequent and accurate position information about ships and
transoceanic aircraft for use by traffic coordination agencies and in
search and rescue operations. This need is only partially satisfied
by existing systems. There is little doubt that the forecasted growth
of transoceanic travel and greatly increased aircraft speeds will com-
pound the problem and impose an enormous burden on communication fa-
cilities. Moreover, there is little reason to believe that there is a
one-to-one relationship between the expected transportation growth and
the accompanying communication needs. It is most likely that the band-
width requirements per vehicle will greatly increase the more affluent
and technological our society becomes. Present transoceanic HF communi-
cation channels are already overloaded during peak traffic periods and
will reach saturation within a few years unless effective improvements
are instituted. Even with more efficient utilization and advanced tech-
nology, it is doubtful if there is sufficient growth potential in the
HF, VHF, or currently used UHF portions of the spectrum to keep pace
with the worldwide communication needs. Looking to the future, it seems
clear that communication satellites operating at microwave frequencies

will be used to alleviate the problem. As for the navigation function

inherent in traffic control, the Technology Audit Corporation in a recent

(L

study stated that there is ''mo urgent need for navigation systems in




addition to those presently available or projected" (i.e., Loran C,
Omega, Delrac). But there is an urgent need for an advisory relation-
ship between shore agencies and the nonmilitary navigator for collision
hazard information, traffic control, search and rescue, etc. It is
probable that as oceanic traffic density increases, any craft which is
potentially a hazard to another will be required to come under traffic
control supervision and hence carry approved equipment. Position re-
ports must be systematically and periodically obtained and processed
with high reliability (as contrasted with the present marine system
which is voluntary and has about 50 percent participation). There are,
therefore, certain obvious advantages from the standpoints of reli-
ability, accuracy, and for emergencies or distress for the navigation
fix to be determined and computed by a ground station rather than on
board the user vehicle. This is not to rule out the possibility of
making on-board computation and fix determination automatic and sub-
ject to readout upon interrogation by the control agency.

In view of the preceding discussion, it appears likely that satel-
lites will have a definite role in future oceanic communication and
traffic control and coordination. Present oceanic navigation facilities
(i.e., hyperbolic systems such as Loran C) would require considerable
expansion to provide global coverage with good accuracy and reliability.

It therefore seems worthwhile to consider how a navigation capa-
bility can be developed as a secondary or bonus feature to a communica-
tion satellite system. With this objective in mind, this Memorandum
is concerned with a computational method for determining a user vehicle's
position (navigation f£ix) from a single satellite by obtaining multiple

measurements of range and range-rate data,




I1. SATELLITE NAVIGATION SCHEMES

There are a great number of possible schemes for determining a
vehicle's position from satellite measurements. It is possible to
conceive of systems employing various combinations of range, range rate,
angle, or angular-rate data using one satellite or several. There are
also schemes (dependent or independent of the user vehicle itself) which
supply certain data (e.g., altitude, speed, or course) to a precision
which may vary from a crude estimate to an accurately measured quantity.
These various schemes may be divided into two basic categories: one
where all measurements are nearly simultaneous in time, and the other
where significant time intervals occur between measurements. There is
an important difference between the two since the latter involves the
determination of position and velocity. For obvious reasons there are
definite advantages to the simultaneous measurement method, the most
important being the elimination of error due to changes in velocity
during the measurement time interval. However, there is a cost in
terms of complexity, reliability, number of satellites in oxbits, etc.,
that may cause the satellite system to no longer appear to provide
navigation capability merely as a secondary feature. References 2 to
5 contain detailed studies of various schemes of the simultaneous type.

The method described here is based on a "six-element fix" where
a small but significant time interval exists between data measurements.
In principle it is nothing more than an orbit determination process in
reverse, using differential correction techniques. That is, instead

of an unknown orbit with reference ground observing stations, assume




the orbit is known, and the ground station (e.g., an aircraft) is on
some unknown trajectory. The problem is to find the six "elements,"
three for position and three for velocity. 1In a practical case, two

of the elements are probably already known with sufficient precision,
i.e., altitude and its time rate of change. This knowledge can be used
to reduce the computation or perhaps as a self-checking feature. As
with an orbit determination process, the computation must start with
certain initial assumptions which are refined step by step as the pro-
cess continues. 1In the reverse process of determining, say, an air-
craft's flight path, it is necessary to start with a set of equations
which will represent the time history of the path between observations,
e.g., constant speed, constant heading (rhumb line) or great-circle
course. Unfortunately, in this process there will be no prior know-
ledge of perturbing influences such as sudden changes in heading or
speed. On the other hand, perturbing effects become small as the time
interval between observations decreases; moreover, except when near
terminals, most aircraft fly rather steady flight paths, particularly
when navigating across oceans. Supersonic transports may travel as
fast as 30 miles per minute which means that position uncertainty may
accumulate quickly due to small instrumentation errors. Accordingly,
it is estimated that a system should be able to provide a fix about
every five minutes or less. The important question is whether or not
an orbit, or, as used here, a trajectory determination process, is con=-
vergent with such short time intervals between observations. This will
depend upon many factors, but most importantly upon the geometry and

relative velocity between satellite and vehicle.




III. USE OF RANGE AND DOPPLER DATA

Generally speaking, an orbit, or a trajectory, may be detemined
by obtaining six independent observational quantities involving either
range, range raie, augular daia, ve cowbivations thereof, if
tions governing the motion are known and if there are no unknown forces
or accelerations. In the restricted case of a surface vessel or an
aircraft at constant known altitude, only four measurements are re-
quired. Again, it is important to clarify the difference between
obtaining a position at a specific time, using three simultaneous
measurements, and obtaining a trajectory using nonsimultaneous mea-
surements. In the latter case, three components of velocity must also
be determined in order to obtain the desired position information be-
cause of the time interval. Furthermore, these components of velocity
are treated as unknown rather than known quantities.

The use of range and/or range-rate data as observable quantities
was chosen for investigation because of the precision which can be
achieved without the use of overly complex hardware on either the satel-
lite or user vehicle.

For a six-element fix, it is theoretically feasible to use either
six independent measurements of range or range rate, or a mixture of
the two. Results from similar past efforts (see Ref. 6) were pessi-
mistic with regard to using a set of range-rate only measurements.
Unsatisfactory results were obtained recently using a set of range-
only measurements, due to the computational difficulties arising when

"small" time intervals between measurements are involved. The question

of "how small" is a function of vehicle and satellite speed and directionm,




i.e., relative velocity. As previously discussed, intervals of less
than five minutes are desirable, not only to reduce errors but for
operational reasons. Note that lines of position obtained from a

single satellite will intersect at very small angles for closely

spaced range measurements. An attempt was made to determine how well

a fix could be obtained under such conditions by using precision range
measurements and modern data processing. Results using range-only
measurements were rather disappointing for reasons to be discussed in
Section VI which deals with the computation process. Using a mixture

of range and range-rate data led to more successful results since the
indeterminacy and computational difficulties were considerably lessened.
This could be surmised by considering the following facts: Range rate is
the component of relative velocity (vector difference between satellite
and vehicle velocity) which is parallel to or along the line between
satellite and vehicle. It is therefore a function (i.e., cos §) of the
angle between this relative velocity and the range vector. Since the
satellite velocity is usually far greater than the vehicle velocity,

the angle ¥ is approximately that of the angle between the satellite
velocity and the range vector. Therefore, the measurement of range

rate is analogous to an angular measurement. As a simple example, con-
sider a vehicle to te motionless on a nonrotating earth, If the sat-
ellite velocity is known, a single measurement of range rate t will
define cos §. As illustrated in Fig. 1 below, the angle {§ defines a
conical surface of position containing all points where this particular
value of r could be measured. In this simple case, the axis of the cone

is along the satellite velocity vector, whereas generally the axis lies




Fig.1—Conical and spherical surfaces of position




along the relative (satellite-vehicle) velocity vector. The measure-
ment of range leads to a conical and spherical surface of position.
(See Fig. 1.) Therefore, the intersection of the cone and sphere with
a sphere representing the earth's surface (or a surface defined by some
specified altitude) will result in two intersecting arcs of position,
as shown below. The ambiguity is easily resolved with only primitive

knowledge of the vehicle's position.

r =~ constant

¥ =constant

Intersecting arcs of position

As might be expected, the fix accuracy will be very sensitive to
the determination of the angle {, and hence the measurement accuracy of

r. For | near 90° the navigation error is approximately rAYy, where
DY ~ - (1)

In the above, r is the range from satellite to vehicle, Vr is the mag-

nitude of the relative velocity vector, satellite to vehicle (as seen




in an earth-fixed reference frame), and Ar is the measurement error
in range rate.
Referring to Fig. 1, note that the range vector Tt is given by
T=P-5

Designating P and S as the velocities of P and S with respect to
an inertial nonrotating coordinate system, then the relative velocity

expressed in this same system is

Hl.

=P -5
Designating Vr as the velocity of § relative to P apparent to an

observer in a rotating earth-fixed coordinate frame, then

= V +‘6 X ;
T e

H e

where Zé is the angular velocity vector defining the rotation of the
earth-fixed axes with respect to the inertial frame. It is important
to note that since the vector result of the cross product is always

normal to r

For two fixed points on the earth's surface, Vr= 0, whereas the relative
velocity of the one point with respect to the other is not equal to zero
when expressed as an inertial velocity (due to the earth's rotation).

In a similar fashion, the relationship between position and range measure-

ment errors may be obtained from the triangular relationship

r2 = 82 + P2 - 2SP cos v




10

where ¥ is the angle between P and S.

Differentiating and setting AS = AP = 0 yields

PAY = Eﬁ*rrw (2)
which shows an unfavorable condition for small values of ¥y, i.e., when
the satellite is nearly directly over the vehicle.

The vectors E, E, and r form a plane and so far only the posi-
tional geometry in this plane has been considered. The general three-
dimensional case, where the relative Vr is not necessarily coplanar,
is considered in Appendix A. It is shown there that a singularity
exists when the out-of-plane component of relative velocity is zero.
Conversely, errors are minimized when the satellite motion relative to

the vehicle is normal to the F, S plane.
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1V. EQUIPMENT ACCURACY

The purpose of this section is to indicate the equipment accuracy
as a function of required position accuracy. Since the measurements
involve only round-trip time delays, the greatest burden is placed on
the measurement of time, i.e., the clock used at the transmit and re-
ceive end. So long as the initial transmitter and final receiver are
at the same end, it does not matter whether these are at the navigator
position P, in the satellite S, or at a ground station that is track-
ing the satellite and communicating with it. It is assumed that the

satellite position vector S and velocity vector VS are precisely known
and need not enter the error analysis and that delay errors in the trans-
ponders also can be made small enough to be neglected. Therefore, re-
quired clock accuracies and the time over which the measurements must

be made will be estimated. It should be noted that this navigation
method uses equipment and techniques similar to those used in pulse
doppler radar; therefore the art is well established.

Assume for illustration that a transmitter and receiver are at
point P, while the satellite has a transponder. A navigator could
transmit pulses to the satellite and receive them after a time delay -.
By comparing the received pulses with those transmitted, the range and
doppler shift can be determined as in radar by

2

_ 2v v v
fd— A (1+C+ (C) +4 ...)

where

A = transmitter wavelength
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v
Neglecting higher order terms in =z

L v vE
fd B VS (3)

The measured velocity v = r is a function of the angle | between
the relative vector velocity Vr and the line-of-sight between P and S,
as discussed in Section III.

Assuming that Vr’ fd’ and A are known or can be measured, the

angle | is given by

b = cos™h C—ji) (4)

T
Knowing the angle | places the point P on the surface of a cone that

intersects the earth in a line, as discussed in Section III. The mea-

surement of time delay T gives range r from the relation

r =5 (5)
which places the point P on the surface of a sphere that intersects the
earth in a circle as indicated on p. 8. The intersection of these
three surfaces locates the points P and P‘.

To obtain a rough estimate of some of the required accuracies,
consider the orthogonal case represented by Eqs. (1) and (2), (i.e.,

where the relative velocity vector Vr is normal to P and 5). Then

rAr

AR(x) = S sin vy

(6)
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where

f is the transmitted frequency
Afd is the error in doppler measurement

AT is the error in time delay measurement

(N

To estimate the required equipment accuracy, assume that the satel-

lite is at synchronous altitude in an equatorial plane and is rotating

in a direction opposite to that of the earth, i.e., retrograde orbit.

Then, in twelve hours the satellite will make one revolution with re-

spect to the earth so that

ZTraR.e
Ve ==
where
t =12 hr
a = 6,61 earth radii
Re = 3,437.5 n mi
c = .572 x 109 n mi/hr
Then

AP(r) (n mi) ~ 2 x 10 ég-

g 0fq
AP(Y) (n mi) ~ 6 x 10 a

This means that frequency must be stable to about one part in

109 during the time of measurement to obtain an accuracy of one n mi
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in the { direction. Considerably less stability is required to make
the range measurements to the same accuracy (because the time period
can be much less). It is interesting to note that some doppler radars
that must reject very high clutter ratios require frequency stabili-
ties of one part in 1010 or better for short time periods.(7) These
conditions can be met by using a master crystal oscillator, multiplier
chain and power amplifier (MOPA); in fact, they are met in some air-
borne radars.

To make position measurements to a given accuracy requires, in
addition to stability, a certain bandwidth B for the range measurement,
and a measurement time T for the velocity or angle measurement. These
quantities B and T determine the resolution in range and velocity that
can be achieved., Since it is possible to obtain better accuracy than
resolution if the signal-to-noise ratio is sufficiently large, there
is a tradeoff between the quantities B, T and e/n, the received signal-
to-noise ratio. When higher derivatives of range and velocity are not

significant, the relations are

k
1 K
AT = =3 (10)
B./e/n
k
afy = ———=2% (11)
T afe/n

where

B = signal bandwidth

T = time taken to make the measurement and the
reciprocal of the effective noise bandwidth
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e/n the received signal energy-to-noise ratio

k1 = a constant dependent on emergy distribution

(~/3/m for a wmiform distribution)

. . {R-12)
These relations are derived in many places. ‘

In the above relations the assumption is made that the quantities
are not changing during the measurements. That is, the satellite must

not move appreciably during the time of measurement

VT < AP (¥) (12)

This condition is not necessary, that is, VrT could be larger than
AP(¥); however, if so, it is necessary to measure acceleration as well
as velocity. The data processing would be somewhat more complicated,
. . . (12)
and other relations would be required relating energy to accuracy.
Assuming that the inequality of Eq. (12) exists, the angle measure-
ment places a limit on the time that can be taken to make the measure-

ment, and therefore on the measurement accuracy. Combining Eqs. (9)

and (1l1) yields

sp(y) ~ 2 (13)
r

subject to the condition AP(y) > VrT' Thus

2
(aey) > 5k (14)




16

Setting K = 1 is equivalent to equating accuracy to resolution. How-
1 ever, for good detection e/n must be between 10 and 100; therefore,
reasonable values of K are from about .15 to ,055.
Next, consider the one-way energy required to make the measure-
ments.
The transmitted energy is given by the peak power ﬁ times its

duration; thus

E = PT (15)

! assuming the transmission is continuous over the period T.

The received signal peak power amplitude is

PGA
§ = ——

4mir

and the effective noise power in the receiver is

where T is the total integration time, k is Boltzmann's constant and
Teff is the effective temperature including system losses. Thus, if
a measurement is made over a time period T, then

2
n 4me/n " kT ..

PT = E = = (16)

If the satellite has sufficient gain so that all of the earth is

illuminated, and if the receiver is a dipole, then
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and the energy required for a one-way transmission is

2 2
. 477 e/n v k Teff

E = (17)
lzaz

If r is replaced by a Ré, where Re is the radius of the earth, then

E = - R (18)

Assuming no limit to the size of the antenna in the satellite,
the power required in the satellite is independent of the satellite
altitude, to a good approximation (a >> 1).

Actually, if a sufficiently large antenna were used, the gain
could be adjusted to be lower directly under the satellite (where
the range is least), and to increase toward the earth limb (where the
range is greater). This would produce a small additional saving in
power. The major gain would accrue to low-altitude satellites.

The choice of noise temperature for the receiver on the ground
considerably affects the energy required in the satellite. There

appear to be roughly three choices.
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Type Maser Tunnel Diode Crystalb
a
Noise Temp o] 600° 000°
(Kelvin) 60 3
Cost $25,000 $1,000 $100
Life 2000 hrs Very Long Long

a . . .
These noise temperatures include all receiver losses.

bThese data were obtained from Ned Feldman of The RAND
Corporation,

Consider, for instance, C- and L-band with e/n = 100, which makes

K = .055 and set noise temperature = 600°.

A = .2 ft (C-band) A = 1 ft (L-band)
4 4
4.4 x 10 4.4 x 10
B = 3(v) (amD) (°PS) B = 32(0) (auD)
AP(Y) > .14 n mi AP(¥) > .32 n mi
I - 2019 cec T o 2095 cee
AP(Y) (n mi) AP(Y) (n mi)

E = .45 joule

=
It

.018 joule

If the value of K is taken as unity, no interpolation is re-
quired, i.e., the processing is quite simple. Note that in this

case
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A= .2 ft (C-band) A =1 ft (L-band)
B = 8 x 105 B = 8 x 105
~ AP(T) (n mi) "~ AP(x) (n mi)
AP(¥) > .6 n mi AP(¥) > 1.35 n mi
T = 344 sec T = 1.72 sec
ORCESD) NORCED)
E = .45 joule E = .018 joule
(e/n = 100) (e/n = 100)

Many waveforms can be used to make the measurements discussed
above. Both range and velocity measurements can be made simulta-
neously using the same transmitted energy. This can be done using
a transmission that lasts for the period T and covers a frequency
band B. Energy can be distributed in the time frequency domain to
give many different types of so-called "ambiguity diagrams."(13) 1f,
for instance, the distribution is pseudorandom, the ambiguity function
can be "thumb tack'" in shape, which means that each pair of points P
and P’ will have a unique matched filter output. While this approach
is most general and economical, the processing may be complicated.

Simplifications in processing may be achieved by making the range
and velocity measurements with two separate transmissions or by using
more ambiguous functions. One waveform that is interesting because

of its frequent use in radar is a series of pulses either evenly or

unevenly spaced. The series must last for at least a period T to make
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the velocity measurement. If few pulses are used, there will be am-
biguities in the measurement of the angle y. If, for instance, a single
pulse were used at the beginning and end of a period T and if K = 1,
then each interval AP(y) would be ambiguous because the frequency
would change by one cycle in the time T for each change in position
AP(Y) .

If a train of uniformly spaced pulses were used, there would be

range ambiguities., If the range between pulses is r the ambiguity

b’

in the { direction r, is given by

al
[~

|

(19)

[

o

<
U“H

If ) is to be equal to the radius of the earth so that there
will be no ambiguity in measurement of range, then, using the same

values as before

r (n mi) ~ 13.2 M(£E)

This would probably not be satisfactory operationally. If, instead,

the ambiguities were divided between the r and { coordinates, then

, . CTrA 4
ru(n mi) rb(n mi) ~ e ~ 4.55 x 10 A(ft)

and if the ambiguities were shared equally in the r and { directions,

then

r, =t ~ 213 n mi A/A(£t)
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which might be satisfactory for some applications. At the expense of
further complexity, the spacing between pulses could be varied; this
then removes the ambiguity. All the techniques for measuring range

and velocity that have been discussed and applied to radar are of
course applicable here, and since there is a wide choice, the selection
of waveform would require further analysis.

It has been shown that a navigation system can be built which
can measure position on the earth to an accuracy of one n mi or less
by making a two-way range and doppler measurement between a satellite
having a velocity relative to a point on the ground. The transmitter
and receiver can be at either end, and a transponder is required at
the other end. The instantaneous satellite vector velocity must be

known to an angular accuracy

AP(4

Ay < =

and the clock must be accurate over a period T to better than one part
in 109 for synchronous altitude. When these conditions are met, the
position measurement can be made in less than a second for reasonable
parameters. If the transmissions are initiated and received on the
ground, say, from a master tracking station, then both the satellite
and the navigator require a minimum of equipment and power. Basically
each requires a transponder.

A satellite communication system could be considered as a poten-
tial way of determining location, since this same equipment could be

used for communication. From this point of view, the data rate used
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for navigation is one bit per period T, where the data are encoded

using a bandwidth B. Hence, it is similar to communication over an
effective bandwidth 1/T. Since T is about .1 to 1 sec, the data rate is
quite low even if position were updated every T sec. Actually, po-
sition would probably be required only once every 5 to 10 min, so

that the energy used for position determining would be quite low com-
pared to that required for most forms of communication.

This discussion has been concerned with determining the location
of a fixed point on the earth when its altitude is known. If the
altitude is not known or if the ground point is moving, errors in
location are introduced.

The remainder of this Memorandum is concerned with a computational
method for determining the position of a vehicle which is moving with
respect to a rotating earth by obtaining several measurements of range

and doppler data.
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V. FIX DETERMINATION PROCESS

This section contains a description of an iterative computational
technique involving differential corrections. It should be familiar
to those acquainted with orbit determination processes.

An initial rough estimate of the user vehicle's position and velo-
city is required to start this process. (Experiments so far indicate
that these estimates can be very rough indeed. 1In fact, it is quite
likely that the user vehicle would not have to supply this infor-
mation.) The basic idea of the scheme is to compare parameters ob-
tained from the assumed position with those obtained from the measure-
ments. Corrections to the assumed position are then computed in a
systematic and orderly way so that the difference between assumed and
measured values is reduced to =zero.

To describe this process, consider a vehicle to be located on the
surface of the earth at point P1 and a satellite at point S1 in space

at time t

1> as shown in Fig. 1. The coordinates of P1 are defined

by geographic longitude le and latitude wlP' The coordinates of S1

are defined in a similar way using A for the subsatellite point.

15’ “1s
Assume arbitrarily that the vehicle's trajectory may be described by
a rhumb-line course (defined as one where the course line makes the
same oblique angle A with all meridians) and that the speed V is con-
stant. Now postulate the following:
o The orbit of satellite S is precisely known, i.e., le’
@18 13 KZS’ q&s at time t,; etc., as well as its

altitude hlS’ hZS’ etc.

at time t
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o Range r, between Pl and S1 and its rate of change fl

can be measured precisely by some means yet to be

described; similarly, r, and fz at time t etc,

23

The problem is how to find the four unknowns (in this restricted

A, and V, given the four measured quantities r,, r

case) kl 1° Yp»

P’ QP]..P’

Tos and fz. The satellite positions S1 and 82 are known quantities.

The assumption is made that the trajectory between points P1 and P2

can be described by the equations relating to a constant speed rhumb-
line course. Before proceeding with details and derivations perhaps
it is better to outline briefly the procedure for obtaining the Ar
and Ar residuals:

- 7 B, fee., A, < .
o Estimate the vectors Pl and Pl’ i.e., 1p° ¢1P’ A, and V
o Using the rhumb-line equations, calculate 52 and FZ'

o Using the above values derived from estimates, compute

rl, r2, rl, r2.
o Form the residuals Ar, = rlO -r

_ ) - I \
Ar2 o0 Toeo Ar2 50 oo where the 0's refer

r, =1, - T

e AF1 T Fig T Fpeo and
to observed or measured quantities and the c's refer

to computed values.

Using a Taylor series expansion in four dimensions and ignoring second

and higher order terms we may write

Brl arl arl Brl
Arl = S@I Awl + SXI AKl + o AA + v i\Y
(20)
bi, = o 09 4 ok an ol gy oLy
1 6@1 1 Bkl 1 2A )Y

and similarly for ar,, Aiz. Thus, two sets of observations provide
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four residuals in Ar and Af, thereby allowing a solution for the cor-

rections to the four elements, ¢1’ Kl, A, and V.

Now consider the more general case where (1) six unknowns are in-

volved including altitude h and its rate of change h, and (2) measure-

ment errors are
will provide 2n
the corrections
h. More than n

of least squares.

partial derivative coefficients must be evaluated for this time.

involved in r and r values.

The n sets of observations
residuals in r and r, thereby allowing a solution for
to the six initial estimates of ll, P A, V, h, and

= 3 sets will allow a more accurate fit by the method

Each set corresponds to a particular time and the

The

matrix M, which must be inverted for determining the corrections, is

then
Ay a1
ATy a4
ATy a3
Ax, 1
Arqd a2n
where a .

11° 2120 "

coefficients evaluated at t.;

and so on.

12

22

32

42

1 aZn

and a,

13
23
33

43

2 23

1’ 2220

1’

14

24

34

44

a

bl

2n4

15 16
85 22
835 43¢
5 e
q9n5  %on6

o,
All
AA

AV

Ah

(21)

are the partial derivative

Appendices B and C contain details regarding the

the next two rows are evaluated at t2
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mathematical relationships necessary to this process. When n sets of

these residuals are available they form a 2n x 1 residual vector Aa.

Aa = .

The least-squares solution for the errors in the estimates may be

written in a shorthand vector matrix form

Ap = [MTM:’-l ML pa (22)

where Ap is the desired 6 x 1 error vector, and M is the partial de-
rivative coefficient matrix of Eq. (21). This equation may also be

written as
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Akl br,
A¢l Ar1
AA i Ar,,
a7 <
Ap = = [MTM | MT
AV Al".‘z
Ah .
(6 x 2 n matrix)

Ah | .
Ar

At
n

The elements of the Ap error matrix represent corrections which
are to be added to the previous values of 11, @1, A, V, h, and h. The
process is then repeated until the errors in the elements of the re-

sidual vector Aa are sufficiently small,
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Vi, SIMULATION RESULTS

A simplified model of the process described above was developed

and simulated on a digital coamputer for a variety of conditions, e.g.,

satellite-vehicle geometry, speeds, time intervals, measurement errors,

etc., in order to test for sensitivity to error and convergence.
Rather than simulating the general case of a six-element fix with
least squares fitting and 2n measurements over n time intervals, we
chose to consider a case where only latitude, longitude, speed, and

course are unknown, i.e., ry, Ty at time tl and r r, at time t,.

2° "2 2
Because of the large number of parameters needed to define the
time-varying paths of both satellite and vehicle, it was convenient
to hold certain of these parameters constant in order to study the
effects of varying others. Accordingly, the following initial con-

ditions were adopted at t = 0 (unless otherwise noted on the fig-

ures) :

0 Vehicle on the equator at 0° longitude and latitude
o Vehicle heading 45° from north
o Satellite on the equator 15° west from the vehicle
o Circular satellite orbits

With this arrangement it was then convenient to vary
o Satellite altitude and inclination angle
o Vehicle speed

o Times tl and t2 at which measurements occurred (thereby

defining relative position geometry and time interval
between measurements)

o Effective measurement errors (Ar and Ar)
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One of the first points of interest occurs in the fix determination capa-
bility of the process under adverse geometrical conditions which cause
computational difficulties. As might be expected, these difficulties
will appear in the form of "ill-conditioned" matrices such as occur in

linear algebraic equations of the fomm

AX = ¥

where x and y are vectors and A is a square matrix. If the determin-
ant of A, though not zero, is very small in absolute value, the nu-
merically large elements in A-1 will amplify small numerical errors
occurring in the calculation to the point that they overwhelm the
significant elements. Figure 2, taken from Ref. 14, illustrates a
typical instability obtained using an iterative process involving an
ill-conditioned matrix inversion. In this navigation process, inde-
terminacy (or instability) is approached primarily as a function of

the relative satellite-vehicle motion between measurements. Therefore,
greater computational difficulties might be expected at (1) higher satel-
lite altitudes, and (2) shorter time intervals between measurements.

The approach taken was to perform a number of idealized cases (i.e.,
error-free measurements) in order to check the program answers against

a known result, i.e., zero navigation error. The answers are considered
to be "zero" if the numerical values are one or, hopefully, two orders
of magnitude smaller than a desired maximum of one n mi. Once the com-
putational error has been isolated, and if it is sufficiently small, a
given quantity is perturbed in order to establish an error sensitivity.

Of course, if a computational 'zero" camnot be established for an idealized
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Fig.2—Solution by matrix inversion
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case because of instability, the error sensitivity determination is not
too meaningful. Figure 3 shows computer results for two idealized cases
(i.e., error-free measurements) with a satellite in a circular orbit at
12,000 n mi altitude. Note that with both cases (i.e., five and ten
minute time intervals between measurements) the process tends to con-
verge quickly from the initial position estimate. However, the five
minute case, instead of converging to zero as it should, approaches

the three mile error level and oscillates about this value, failing

to improve. The navigation errors represented in these curves are

due entirely to amplification of small numerical errors by the inverse
of an ill-conditioned matrix. Therefore, the numerical answers are
dependent on the particular machine accuracy and numerical processes
used. There are several processes for inverting matrices with_varying
degrees of accuracy and there are differential correction techniques
for improving a given inversion. Moreover, there are other computa-
tional techniques for solving a system of linear equations by succes-
sive approximation and/or dynamic programming.

Not being satisfied with the results indicated by Fig. 3 in
establishing a zero, we supplemented the program with a numerical
technique as described in Refs. 14 and 15, and were successful in
reducing the numerical errors by one and, in some cases, two orders
of magnitude. However, the basic root of the difficulty is that the
system error sensitivity is very great at the higher satellite altitudes.
Subsequent results will show that this sensitivity, acting upon errors
from other sources, will overwhelm the numerical errors so as to make

these cases rather uninteresting. For example, Fig. 4 shows results



32

100
Initial estimate
10 -~
T L
C —
s |
g a \ A7=5 min
gs
g o \
z \
'E \
E \\AT =10 min
= \ Vv = 2000 kn
X
h = 12000 n mi
| \
\
\
0.1 0 1 2 3 4 5 6

{teration number

Fig.3—Effects of time interval on convergence
(error free measurements)




Navigation error (n mi)

100 -
_Af'=1 ft/sec / /
Velocity (kn) = 600 / Ar=0.11/sec
Velocity (kn) = 600
o /| e

o

/ 2000
2000

L/
/4

LR

AN

IR

POLAR
ORBITS

0.1 //

LR

.01
0 2 4 6 8 10

Orbital altitude (103 n mi)

Fig.4—Navigation errors due to Ar measurement error




for a number of cases where the time interval between the two sets
of measurements was 10 min. Two sets of error curves are shown, one
for a 1.0 ft/sec range-rate At measurement perturbation, the other for
a perturbation of 0.1 ft/sec. Note that there is a linear relation-
ship, in that the 1.0 ft/sec error curves are displaced vertically one
order of magnitude above the 0.1 ft/sec curves, the slopes are steep,
and the resultant error quickly becomes unacceptable at the higher
altitudes. Figure 5 shows the results obtained when the time interval
between measurements was varied for a constant altitude case (h =
2000 n mi). The results for direct and retrograde equatorial orbits
are compared to illustrate the influence of the relative velocity on
the resultant errors. (See Fig. 6.)

Three different major error sources may contribute to an effective

Ar (1) electronic measurement errors due to frequency instability or

propagation effects, (2) uncertainties in satellite velocity, and (3)
vehicle accelerations during the measurement time interval. This last
effect may be regarded as equivalent to a range-rate measurement error,
since the navigation process is based on the assumption that a constant
speed rhumb-line course prevails during a time interval which is to be
small. Accordingly, the resultant solution to the navigation problem in-
volves a constant average velocity between points. If acceleration exists,
the instantaneous vehicle velocities at times t1 and t2 will differ from
this average value, effectively contributing to a Ar error. Again

this points to the desirability of many measurements at short time

intervals. It follows that the data processing must be compatible

with the computational accuracy imposed by the short time intervals.
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VII., CONCLUSIONS

The results from the previous section, although by no means com-
plete, are sufficient to draw certain conclusions regarding the feasi-
bility and practicality of this concept for aircraft navigation. To
review briefly, the basic idea is to determine the aircraft's position

y P ~T\
\acCutaccliyy

Fh

rom multiple measurements, using a single satellite,
without requiring the aircraft to provide precise velocity informa-
tion. That is, the aircraft velocity information necessary to com-
pute the fix (since a time interval between measurements is involved)
will be derived from data processing by a ground station. The problem
is difficult because it is necessary to separate out computationally
the contribution of the vehicle's velocity to the change in measure-
ments. This contribution is likely to be small relative to that
caused by the satellite and the earth's rotation. Moreover, the re-
sultant navigation error is quite sensitive to errors in the deter-
mination of the vehicle's velocity.

The simulation results show that the data processing technique
is rapidly convergent, e.g., from an initial estimate of an 84-mi
error to zero in about four iterations. The navigation process is
quite sensitive to effective errors in measured doppler shift, partic-
ularly at the higher satellite orbits where the relative velocity
decreases. Orbital altitudes greater than about 4000 mi show un-
satisfactory aircraft navigation accuracies for the estimated range
of values for Ar error and for practical time intervals between mea-
surements. However, for surface vessels where the time interval could

be stretched out, it is likely that sufficient accuracy may be achieved



using the higher altitudes. Low-altitude orbits are most favorable
for accuracy because of the higher relative velocities. The most un-
favorable geometry occurs when the satellite is directly over the ve-
hicle or when the satellite's velocity is roughly in the same plane as
the great circle conmecting the subsatellite point and the vehicle.

The work done so far has been preliminary in nature and has not
included the generalized model of a "six-dimensional" fix with many
measurements over a time interval using a least-squares fit. Certainly
this would have to be done before detailed conclusions can be drawn
regarding (1) the effects of vehicle acceleration and its contribution
to effective Ar error, (2) lower and upper practical limits on the fix
time interval and (3) effects of random error on navigation accuracy.
The results of this investigation indicate that further study efforts
are warranted if low-altitude communication satellites become operational
so that these navigational techniques might be employed as a bonus bene-

fit from the basic communications satellite system.




39

Appendix A

SIMPLIFIED THREE-DIMENSIONAL ERROR ANALYSIS

In Section III only the positional geometry in the plane formed by
the vectors P, S, and r was considered. It is worthwhile to examine the
general three-dimensional case where the relative velocity vector V¥

(or ) is not necessarily coplanar. The basic equations defining the

navigation fix problem may be expressed by the simple vector equation
P=S+T1 (la)

There are three unknowns to be determined: Px’ Py’ PZ. For this
example assume that the vectors §; §; and P are precisely known and
hence the relative velocity T is defined by

rT=P-§5 (2a)

where all velocities are referred to an inertial nonrotating frame. Two

quantities are measured: r and r. For simplicity, let us take
|§‘ =P =1 (earth radii)

The solution of the following three equations will yield the three

components of P

P.-P=1
T . Vr = fr (3a)
- = 2

r.r=r

Of particular interest is the relationship between the position
error AP and the errors in measured quantities Ar and Af. Differen-

tiating the above equations and expressing the results in scalar form

=0
Px APX + Py APy + Pz APZ (4a)



40 »

er Arx + Vry Ary + Vrz Arz = vAr + rAr
(4a)
r Ar +r_ Ar + r_Ar = rAr
X X y Ty z Z
where r =P - S , Ar. = AP_, and similarly for the y and z components,
X X X X X

At this point, a convenient x, y, z coordinate system can be arbitrarily
chosen without loss of generality. For the moment, postulate that there

is an x, y, z nonrotating frame such that P is along the x-axis. That

is

Since the latitude and longitude errors in AP are of primary concern,

errors in altitude will be ignored so that

APX =0
Now, the resultant solutions to Egqs. (4a) may be expressed as

(rzi - Vrzr) Ar + r x AT
AP_ = (5a)
- \Y
y (Vryrz ry rz)

(rVrXA- ryf) Ar - T T AT
APz = V. r -rV ) (6a)
ry z y rz

It is interesting to note that the denominator in the above expressions

may be written as

F.(er'f)
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which is identical to

V. (TxD

The vector (T x P) is normal to the plane containing the position vectors

T, P and S. If Vr should be in this plane, the above dot product and

hence the denominator in Eq. (6a) will be zero. Geometrically, this

may be interpreted as the situation where the two lines of position (LOPs)

are parallel. This will occur when the two arcs (i.e., r = constant

sphere and r = constant cone) on the earth's surface are tangent.
Referring to Fig. 1, note that if V; is in the same plane as P

and §, the intersection on the earth's surface will not be as shown

on p. 8 but as shown in the sketch below.

e
|

= constant

r = constant

Therefore, the most favorable geometry for minimum error occurs when
the relative velocity V; is nomal to the ;, S, P plane.

In choosing a coordinate system, it was only stipulated that P should
be along the x-axis. The results may be simplified further by choosing

the coordinate system such that the x, y plane contains T, S, and P so

that
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The results of Eqs. (4a) then simplify to

_ IAr _ rAT
APy T r S sinvy (7a)
y
[(V = . f) Ar - rAfJ
ry t
AP = - L (8a)
rz

%
AP = [APZ + APi] (92)
y

Note that the expression for APy is the same as given by Eq. (2) and that

a singularity exists when the out-of-plane component Vrz is zero. More-

over, if Vr is orthogonal to the r, S, P (x, y) plane so

that V. =V_ =0,
X Ty
then the expression for APZ reduces to
_ TAt
APZ = —v: (10a)

The above result is comparable to Eq. (1). In the work that follows,

the satellite velocity § is expressed in terms of inertial coordinates,
i.e., nonrotating frame of reference. The vehicle velocity ? is then
referred to this same frame and must necessarily contain terms involving
the earth's rotation.

As noted in Section III, it is important to recall that Vr is a

relative velocity expressed in an earth-fixed rotating coordinate sys-

tem so that

<l
I

r - W Xr
r e
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For low altitude, large absolute values of V; may be expected due
principally to the satellite motion. On the other hand, for a circular,
equatorial, synchronous satellite, the relative motion expressed by

Vr is due only to the vehicle's motion and is zero for a fixed point

on the earth. However, the relative motion as defined by é in an
inertial system would not be zero for the above mentioned case or in

any practical case.
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Appendix B

FORMULAS APPLYING TO FIX DETERMINATION PROCESS

The purpose of this Appendix is to set down certain mathematical
relationships which are necessary to the numerical process described
in Section V. Returning to the example for n=2 sets of observations,
the four quantities rol’ iol’ r02, and foZ are measured and it is
necessary to compute the values of L icl’ PP and fc2 using estimates
for ¢, A, A, and V. First, we must have the basic equations describing
the trajectory of the vehicle between observation times £ and t,. These

2

equations may be established by taking an element of arc as

s

2
ds = P[cos © da? + d@2] (1b)

and

tan A = cos © %% (2b)

These two equations may be integrated as follows

2 %2, oaf
v(t, - £)) = j ds = j PLcos @(d@) + 1] de
& P

= P(cp2 - @l) sec A

Hence
V(t2 - tl)
Py =@ +——p— cos A
3b
%, (3b)
My - A = tan A | —=2_
2 1 cos @
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so that

tan @, + sec o
r 2 2 ] (b)

12 = ll + tan A 1n | Tan % T soc =)

Referring to Fig. 1, the values for range may be computed from the
following vector expressions. The subscripts 1 and 2, indicating values

at times t1 and t2’ are dropped for generality,

In an inertial, equatorial, nonrotating reference frame, the components

of P are given by

PX = P cos @ cos §
Py = P cos ¢ sin § (5b)
Pz = P sin o
where
6 =X+ n, t
n, = earth's rotational rate
t = Greenwich sidereal time (i.e., taking

the x-axis along the vernal equinox)

The components of 51, 82 may be calculated from the orbital parameters
which are assumed to be precisely known. Appropriate expressions are

set down here for convenience. (The reader is referred to any text on

celestial mechanics, such as Ref. 16, for derivation.)
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S =XU.)pX+y(.DqX

Sy = xw py + yw qy

Sz = X Py * Yo Yz
where

X, = a(cos E -~ e)

y =a 1 - e2 sin E

w

P, = €Os w cos QQ - sin wsin Q cos 1
py = cos wsin () + sin w cos () cos 1
p, = sin w sin i

qx = - sin wcos (Q - cos w sin () cos i
qy = - gin wsin Q + cos wcos (Q cos 1
qz = cos w sin i

a = semimajor axis of the orbit

E = eccentric anomaly given by the solution
of Kepler's equation n(t - T) = E - e sin E

T = time of perigee passage

e = orbital eccentricity

i = inclination of the orbital plane

(0 = node angle

w = argument of perigee
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The values for range rate may be computed from

e=ﬁ-ﬂ.

Again, subscripts are dropped for gemnerality. Designating the velocity

(6b)

Hn|

of the point P as vV, i.e., VP = P, and differentiating the expressions

d)

for P and Eqs. (3b) yields the following

(p=%cosA

sin A sec 9+ n

De
]
o<

E

VPX=-V[cosAsincpcos6+sinAsin9]
hP
- i 7b
PnE coscpsme+P (7b)
VPy=-V[cosAsincpsin9-sinAcos 8]
h P
+ Pn_ cos ¢ cos o + —L
E P
hP
VPZ=VcosAcos ¢+ 35—

Designating the velocity of the satellite as VS’ i.e., VS = S, the

components referred to the same inertial frame are derived from

2
'§=VS=-n——:—[sinE;- l-ezcosEE] (8b)
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where n = mean angular rate of the satellite (i.e., 2m divided by the
period) and the components of ; and E are given above.
At this point Eq. (6b) can be written in scalar form for computing
range rate in terms of the scalar quantities listed above.
Sz? r, t (VPz B VSz) *
27

z |

_ (VPx

- VSX) T + (VPX,_ v

Z (9b)

e
1
N o)

[rz + r2 + r
X y
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Appendix C

EVALUATION OF PARTIAL DERIVATIVES

This appendix is concerned with the determination of the partial
derivative coetfticients ot the matrix of Eq. (21), which is repeated

here with the h and h terms omitted.

[ =
—hr - Brl arl arl arl o
1 3. . A v | |™1
1 1
A arl arl arl arl "
1 Jo 10 oA 3A 3V 1
1 1
Ar ar2 ar2 ar2 arz "
2 fo i) o dA av
1 1
i _ ar2 ar2 arz arz v
2 P dA JA o) —
1 1
Jr or or dr
Ar n n n n
n Bml axl d0A av
. dr dr or dr
Ar n n n n
" 2, dhy A 3V

Although the assumption of a rhumb-line course (A = constant and
V = constant) leads to range and range-rate expressions which appear
relatively simple, it was surprising that evaluation of the partial
derivatives was so tedious and the resultant expressions so inordi-

nately complex.
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Further reflection shows that a rhumb-line course over a spherical
earth represents a rather complex motion in three-dimensional inertial
space, as is indicated by reference to Eq. (7b).

Therefore, in an effort to simplify the differentiation in orderly
fashion, the partial derivative expression will be broken down into parts
which may be more readily evaluated.

The expression for range is
r= [T = [(® -5

where P and S are the vehicle and satellite positions respectively. By
partial differentiation with respect to the variables of concern, namely

P15 ll, A and V

sr _ axD _ adp - 8D
qu qu qu

where
4 =9
G =N
q3=A
and
9 =V

The range vector r may be expressed in terms of its components,

r , r , r so that
x’ 'y’ Tz
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dr_ _ (Br 3r 3r X
3q. 3r Jdr. 3r )
i x Ty Tz

| | i=1, 2, 3,4

The q; represent the four parameters ¢, A, A, V at time tl' (Note that
for the sake of generality, subscripts which indicate a particular
time have been dropped except where they are needed to clarify the
i derivation of the partial derivatives.)
The T components, r.s ry, and L in turn are each functions of
{ the X, y, z components of vehicle and satellite position (see Eq. (5b)).

Since the satellite position is not a function of the variables q;>

then 95 0, and the partial derivatives involving terms in S need

044

not be considered. Thus

or oP
- X , etc.
aqi aqi
We may now write
ar (ar_ ar ar) | B

dq;  \or, ary arz/ 3q;
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The vehicle position at time t and, hence, f; is a function of the 4

variables @1, A, A, and V at time tl' Moreover, the components of ?g

1’
are expressed in terms of the inertial coordinates 9, and en. There
is a simple coordinate transformation from these inertial coordinates

to the rotating earth-fixed coordinates @ and ln. It is easily de-

termined that

and P, is identical in both systems. It is important to emphasize
that the position coordinates P, and Xn at time tn are functions of
the q; parameters, 9q> Xl’ A, and V at time tl'
Thus, the partial derivative coefficients for range are given in
terms of their components as follows
an BPX acpn
dp 06 3q,

1

dr_ _ (ar 9r_ 3r )
094 or, Bry Brz

BPV BPY Bkn
dp 96 3q.

1

— -

oP_ oP
—_2 _Z
|3 38

Now the partial derivatives of range-rate t are developed in
piecemeal fashion. Again, the subscripts are dropped for the sake of
generality.

From Eq. (6b) the partial derivatives for range rate are given

by
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r\ bal -
371 _ = - a(r) T E(VE ) VS)
~— =W -v) += - S
aql P S aqi r 3q;

where V_ and V; are the vehicle and satellite velocity vectors, re-
b

spectively, r is the range vector from the satellite to the vehicle,

and r is the magnitude of this vector. On further breakdown note

that

The partial derivative for range rate may be written as follows

. vV, -V)
%—— - .k g gr Term #1
93 T 94 |
V. - V) =
4+ —£ s . ax) Term #2
r 09,
1 —t
- (V. -V)
+E. —b S Term #3
T aqi |

Examining Term #1, note that the partial derivatives have already

been determined. Therefore, we may write
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1
= e — - -V - -
Term #1 r2 [(VPX VSx)’ <VPY SY)’ (VPz VSZ)] er
r oxr
y 3q.
r
L 2]

Considering Term #2, the partial derivatives are oAx) . Using

oq.
i
preceding results for %%— , we may determine that
T
arx BPX an e
aqi dp 28 aqi
3T 3P 3P 3
Ty . ¥y
30 ,
34y o | 29 |
arz BPZ aPZ
Léqi~ { op 29
Term #2 can now be written as
1 an BPX BN
Term #2 = ; [(VPX B VSX)’(VPy i VSy)’(VPz h VSz)} o a6 qu
2P 3P
Y ¥ |2
@ 90 aq,
. 1]
3P P
—z _Z
dp 36

Term #3 involves partial derivatives of the velocity expressions.
Again note that the satellite velocity is not involved here since it
is not a function of the 9y parameters, Py kl, A, V. Only partial de-

rivatives of the expressions for vehicle velocity need be considered.
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Moreover, for the purposes of this computation, changes in vehicle al-
titude are neglected as they are not considered to be of practical
significance. The vehicle velocity is a direct function of all four

parameters which may in turn be functions of each other. Therefore,

BVPX ) ava BVPx aVPx aVPx o ]
qu 3ep 36 JA ov qu
BVP BVEy aVEX aVPv BVPy an
aq, op o0 BA 3V oq,
i i
aVPz aVPz aVPz aVPz avPz JA
qu | i Ao a6 dA ov | qu
oV

gaqi—

Now Term #3 is written in terms of its components

3V__ 3V__ 3V, 3V ]
1 Px “'px “'Px “'Px o
Term #3 = ¢ (rgo Tye ¥) |59 26 A oV | |3,
BVPX ava aVPX ava YN
dp 38 3A OV 9q;
BVPZ ava aVPz aVPz DA
oL
aqi

Having formed the three terms it is a simple matter to combine
them to express the partial derivatives of range rates in terms of

their components.
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Partial Derivatives of Range and Range Rate

Partial derivatives of range with respect to the components of T:

ar _Ix

ar r
X

ar _ Iy

or r
y

or =i§

ar r

Partial derivatives of the components of P with respect to ¢ and B:

(Note again that [f‘ = P is considered constant.)
BPX BPX
SET = P(- sin ¢ cos 8) % - P(- cos ¢ sin 6)
oP oP
S;r'= P(- sin ¢ sin 0) 351 = P(cos o cos 6)
aPz BPZ
——— = —=O
0 P cos ¢ 30

Partial derivatives of the components of V§ with respect to @:

ov

V(- cos A cos 6 cos @) + PnE(sin 9 sin )

i

V(- cos A sin 9§ cos @) - PnE(sin @ cos @)

V(- cos A sin )
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Partial derivatives of the components of \—fP with respect to ©:

V(cos A sin g sin ¢ - sin A cos @) - Png(cos @ cos ©)

V(- cos A cos 9 sin ¢ - sin A sin @) - PnE(cos ¢ sin 9)

Partial derivatives of the components of VP with respect to A:

Vpy

JdA

V
dA

2

aVPz
JA

V(sin A cos @ sin ¢ - cos A sin 0)

V(sin A sin @ sin ¢ + cos A cos 0)

V(- sin A cos @)

Partial derivatives of the components of VP with respect to V:

av
v

3

)/
By
av

aV]?z
oV

(- cos A cos g sin ¢ - sin A sin @)

(~ cos A sin p sin ¢ + sin A cos o)

(cos A cos )
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(Note that in the components below, the subscript notation indicates
the value at time tn.)

Partial derivatives of ©, with respect to P> xl’ A, V:

dep d
_E= 1’ —'r_1'=0 n-= 1, 2, 3’ .
Bml akl
op o9
~L_._"_y n=1
JA aVv

Y V(e - t.) o (t. - t))

n _ n 1 : n_ "mn 1 =
SA 7 sin A, v S cos A n 2, 3, 4, ..

Partial derivatives of xn with respect to Pp > xl, A, V:

Bkn
— =1 n=1, 2, 3, ...

Bkl

axn A axh

= = = 0 =
3p; oA EY n=1
or
551 = tan A(sec P, - sec @1) n=2, 3, 4, eus
n _ n 1 n _
SA ~ sin A cos A T ta? A sec o) I3 n=2, 3,4, ...
M o9

— ____n =
3V tan A sec Cpn aV n 2: 3, 4’



Partial derivatives of A with

respect to Pps Xl’ A, V:

3A

A L

A _ 04 _ QA _
6@1 Bkl av

Partial derivatives of V with respect to 9> xl’ A, V
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